82 research outputs found

    Species-specific secondary metabolites from Primula veris subsp. veris obtained In Vitro adventitious root cultures: an alternative for sustainable production

    Get PDF
    Primula veris subsp. veris L. is a perennial herbaceous and medicinal plant species the roots and flowers of which are a source of valuable pharmaceutical raw materials. The plant tissues are used to produce expectorant and diuretic drugs due to their high content of triterpene saponins and phenolic glycosides. Underground roots of P. veris can be obtained only through a destructive process during the plant’s harvesting. In the present study, an in vitro adventitious root production protocol was developed as an alternative way of production, focused on four species-specific secondary metabolites. Root explants were cultured in Murashing & Skoog liquid medium supplemented with 5.4 µM α-naphthaleneacetic acid, 0.5 µM kinetin, L-proline 100 mg/L, and 30 g/L sucrose, in the dark and under agitation. The effect of temperature (10, 15 and 22 ◦C) on biomass production was investigated. The content of two flavonoid compounds (primeverin and primulaverin), and two main triterpene saponins (primulic acid I and II) were determined after 60 days of culture and compared with 1.5-year-old soil-grown plants. The accumulated content (mg/g DW) of bioactive compounds of in vitro adventitious roots cultured under 22 ◦C was significantly higher than the other two temperatures of the study, being 9.71 mg/g DW in primulaverin, 0.09 mg/g DW in primeverin, 6.09 mg/g DW in primulic acid I, and 0.51 mg/g DW in primulic acid II. Compared to the soil-grown roots (10.23 mg/g DW primulaverin, 0.28 mg/g DW primeverin, 17.01 mg/g DW primulic acid I, 0.09 mg/g DW primulic acid II), the in vitro grown roots at 22 ◦C exhibited a 5.67-fold higher content in primulic acid II. However, primulic acid I and primeverin content were approximately three-fold higher in soil-grown roots, while primulaverin content were at similar levels for both in vitro at 22 ◦C and soil-grown roots. From our results, tissue culture of P. veris subsp. veris could serve not only for propagation but also for production of species-specific secondary metabolites such as primulic acid II through adventitious root cultures. This would therefore limit the uncontrolled collection of this plant from its natural environment and provide natural products free from pesticides in a sustainable wa

    Genetic vs community diversity patterns of macrobenthic species: preliminary results from the lagoonal ecosystem

    Get PDF
    1 - The use of molecular data derived from multispecies assemblages in order to test ecological theory has only recently been introduced in the scientific literature.2 - As a first step, we compared patterns of abiotic environment, polychaeta distribution and their genetic diversity in five lagoon ecosystems in Greece. Our results confirm the hypothesis that higher genetic diversity is expected in the populations of the species occurring in the transitional waters rather than of those occurring in the marine environment.3 - Patterns derived from the polychaete community level and from the mitochondrial DNA (16S rRNA) obtained from Nephtys hombergii and Hediste diversicolor showed convergence, indicating the potential use of molecular matrices as surrogates in community analysis.4 - Finally, the high correlation between the genetic diversity pattern of H. diversicolor and the phosphorus concentration in the sediments may imply the broadening of the hierarchic-response-tostress hypothesis towards lower than species level

    A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L.

    Get PDF
    The gilthead sea bream (Sparus aurata L.) is a marine fish of great importance for fisheries and aquaculture. It has also a peculiar sex-determination system, being a protandrous hermaphrodite. Here we report the construction of a first-generation genetic linkage map for S. aurata, based on 204 microsatellite markers. Twenty-six linkage groups (LG) were found. The total map length was 1241.9 cM. The ratio between sex-specific map lengths was 1:1.2 (male:female). Comparison with a preliminary radiation hybrid (RH) map reveals a good concordance, as all markers located in a single LG are located in a single RH group, except for Ad-25 and CId-31. Comparison with the Tetraodon nigroviridis genome revealed a considerable number of evolutionary conserved regions (ECRs) between the two species. The mean size of ECRs was 182 bp (sequence identity 60–90%). Forty-one ECRs have a known chromosomal location in the pufferfish genome. Despite the limited number of anchoring points, significant syntenic relationships were found. The linkage map presented here provides a robust comparative framework for QTL analysis in S. aurata and is a step toward the identification of genetic loci involved both in the determination of economically important traits and in the individual timing of sex reversal

    Quantitative Trait Loci Involved in Sex Determination and Body Growth in the Gilthead Sea Bream (Sparus aurata L.) through Targeted Genome Scan

    Get PDF
    Among vertebrates, teleost fish exhibit a considerably wide range of sex determination patterns that may be influenced by extrinsic parameters. However even for model fish species like the zebrafish Danio rerio the precise mechanisms involved in primary sex determination have not been studied extensively. The zebrafish, a gonochoristic species, is lacking discernible sex chromosomes and the sex of juvenile fish is difficult to determine. Sequential protandrous hermaphrodite species provide distinct determination of the gender and allow studying the sex determination process by looking at the mechanism of sex reversal. This is the first attempt to understand the genetic basis of phenotypic variation for sex determination and body weight in a sequential protandrous hermaphrodite species, the gilthead sea bream (Sparus aurata). This work demonstrates a fast and efficient strategy for Quantitative Trait Loci (QTL) detection in the gilthead sea bream, a non-model but target hermaphrodite fish species. Therefore a comparative mapping approach was performed to query syntenies against two other Perciformes, the European sea bass (Dicentrarchus labrax), a gonochoristic species and the Asian sea bass (Lates calcarifer) a protandrous hermaphrodite. In this manner two significant QTLs, one QTL affecting both body weight and sex and one QTL affecting sex, were detected on the same linkage group. The co-segregation of the two QTLs provides a genomic base to the observed genetic correlation between these two traits in sea bream as well as in other teleosts. The identification of QTLs linked to sex reversal and growth, will contribute significantly to a better understanding of the complex nature of sex determination in S. aurata where most individuals reverse to the female sex at the age of two years through development and maturation of the ovarian portion of the gonad and regression of the testicular area. [Genomic sequences reported in this manuscript have been submitted to GenBank under accession numbers HQ021443–HQ021749.

    A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis

    Get PDF
    Background: Comparative teleost studies are of great interest since they are important in aquaculture and in evolutionary issues. Comparing genomes of fully sequenced model fish species with those of farmed fish species through comparative mapping offers shortcuts for quantitative trait loci (QTL) detections and for studying genome evolution through the identification of regions of conserved synteny in teleosts. Here a comparative mapping study is presented by radiation hybrid (RH) mapping genes of the gilthead sea bream Sparus aurata, a non-model teleost fish of commercial and evolutionary interest, as it represents the worldwide distributed species-rich family of Sparidae.Results: An additional 74 microsatellite markers and 428 gene-based markers appropriate for comparative mapping studies were mapped on the existing RH map of Sparus aurata. The anchoring of the RH map to the genetic linkage map resulted in 24 groups matching the karyotype of Sparus aurata. Homologous sequences to Tetraodon were identified for 301 of the gene-based markers positioned on the RH map of Sparus aurata. Comparison between Sparus aurata RH groups and Tetraodon chromosomes (karyotype of Tetraodon consists of 21 chromosomes) in this study reveals an unambiguous one-to-one relationship suggesting that three Tetraodon chromosomes correspond to six Sparus aurata radiation hybrid groups. The exploitation of this conserved synteny relationship is furthermore demonstrated by in silico mapping of gilthead sea bream expressed sequence tags (EST) that give a significant similarity hit to Tetraodon.Conclusion: The addition of primarily gene-based markers increased substantially the density of the existing RH map and facilitated comparative analysis. The anchoring of this gene-based radiation hybrid map to the genome maps of model species broadened the pool of candidate genes that mainly control growth, disease resistance, sex determination and reversal, reproduction as well as environmental tolerance in this species, all traits of great importance for QTL mapping and marker assisted selection. Furthermore this comparative mapping approach will facilitate to give insights into chromosome evolution and into the genetic make up of the gilthead sea bream

    Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP) discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock population.</p> <p>Results</p> <p>The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme <it>Hae</it>III; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends). Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In addition, 2% of the sequences from the validated markers were associated with rainbow trout transcripts.</p> <p>Conclusion</p> <p>The use of reduced representation libraries and pyrosequencing technology proved to be an effective strategy for the discovery of a high number of putative SNPs in rainbow trout; however, modifications to the technique to decrease the false discovery rate resulting from the evolutionary recent genome duplication would be desirable.</p

    Poly-β-hydroxybutyrate administration during early life: effects on performance, immunity and microbial community of European sea bass yolk-sac larvae

    Get PDF
    The reliable production of marine fish larvae is one of the major bottlenecks in aquaculture due to high mortalities mainly caused by infectious diseases. To evaluate if the compound poly-β-hydroxybutyrate (PHB) might be a suitable immunoprophylactic measure in fish larviculture, its capacity to improve immunity and performance in European sea bass (Dicentrarchus labrax) yolk-sac larvae was explored. PHB was applied from mouth opening onwards to stimulate the developing larval immune system at the earliest possible point in time. Larval survival, growth, microbiota composition, gene expression profiles and disease resistance were assessed. PHB administration improved larval survival and, furthermore, altered the larva-associated microbiota composition. The bacterial challenge test using pathogenic Vibrio anguillarum revealed that the larval disease resistance was not influenced by PHB. The expression profiles of 26 genes involved e.g. in the immune response showed that PHB affected the expression of the antimicrobial peptides ferritin (fer) and dicentracin (dic), however, the response to PHB was inconsistent and weaker than previously demonstrated for sea bass post-larvae. Hence, the present study highlights the need for more research focusing on the immunostimulation of different early developmental stages for gaining a more comprehensive picture and advancing a sustainable production of high quality fry

    Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.)

    Get PDF
    Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth
    corecore